*The proportion of the "youngest" threads is 32.23 % – almost a third of the total – on the whole SAMPLE. In the case of the "cleaned", radio dated sample, it increases to 41.65% – approaching the half.*

So I appreciated hearing from Joe Marino:

Barrie’s October 5 update had a paper from the 1993 Rome symposium by the late archaeologist Maria Grazia Siliato titled "

The Shroud of Turin and its radiodating".I think you mentioned Barrie’s update at the time but no special mention was made of this paper. I just reread it again this morning and although I’m biased, I think it’s an excellent article that didn’t get the notice it deserved at the time and still doesn’t, but in light of all the other evidence that has come out about the reweave theory since then, I think it is a most significant paper. Give it another read and see if you don’t agree.

I agree. **The Shroud of Turin and its radiodating** by Maria Grazia Siliato, translated by Dr. Augusto Monacelli, demands the attention of everyone interested in the 1988 carbon dating. Here is a sample (pun intended):

We have come to the core of the problem.

At that time, product analyses carried out by experts Timossi and Raes calculated, with good accuracy, the MEDIUM WEIGHT PER SQUARE CENTIMETER OF THE SHROUD’S CLOTH.

It was also calculated with radiographs by Morris, London and Mottern in 1978, and the result was consistent with the previous ones. The lowest average weight was the one proposed on another occasion by the operator in charge of the sample to be radio dated.

Considering the irregularities of an ancient, handcrafted cloth, and in order to move within safer margins, we have applied a prudential, surplus tolerance to the measures indicated.

Let us therefore assume an average weight of 25.00 MILLIGRAMS PER SQUARE CENTIMETER of the SHROUD’S CLOTH.

Now, the following is what happened upon TAKING THE SAMPLE FOR RADIO DATING:

1) According to the official operator in charge of taking the sample, the sample measures cm 8.1 x 1.6, namely, cm² 12.96

2) In the video showing the taking of the sample, the weight measured on the scales is mg 478.1

3) Dividing the sample’s weight by its surface (mg 478.1: cm² 12.96), we obtain a WEIGHT of approx. mg 36.89 per cm².

Therefore, the sample weighs mg 11.89 per cm² MORE than the original cloth should – at most.

4) However, the operator in charge of taking the sample says that he removed some irregularities and some "free" threads from the sample. (Let us skip the singular procedure of "rethreading" and squaring such a precious, ancient sample, wasting further irreplaceable material). The operator reduced the sample’s measures to cm 7.00 x 1.00, namely cm² 7.00)

.

WEIGHTS OF THE SHROUD AND WEIGHTS OF THERESTORATION WORKSSHROUD → AVERAGE WEIGHT → 1 cm² (pict. of scales) mg 25.00 cm² 12%

WEIGHT mg 478.1

SAMPLE TAKEN → AVERAGE WEIGHT → 1 cm² (pict. of scales) mg 36.89 cm² 7.00

WEIGHT mg 300

RADIODATED PART OF SAMPLE → AVERAGE WEIGHT → 1 cm² (pict. of scales) mg 42.85

The sample bears recent restoration works of mg 17.85 per cm² – accounting for 41.65 % of the total

.

5) Then the operator reports the WEIGHT of the sample, "cleaned" and distributed to laboratories: mg 300

6) Dividing the weight of the "cleaned" sample by its surface of mg 300: cm² 7.00, we obtain a WEIGHT of mg 42.85 per cm².

The sample weighs mg 17.85 per cm² MORE than the original cloth should, at most.

This element is even more surprising and irregular than that of the "non cleaned" sample.

A few millimeters away, we find differences of nearly 6 milligrams per square centimeter. (Difference between 36.89 and 42.85 = 5.96).

7) AS A RESULT, WHAT EMERGES IS THE PROOF THAT THE SAMPLE WAS IRREGULARLY LOADED WITH FOREIGN, UNDETERMINED TEXTILE MATERIAL – in other words, MANY THREADS WERE ADDED FOR ITS MENDING with various techniques IN DIFFERENT, MUCH LATER AGES.

8) The proportion of the "youngest" threads is 32.23 % – almost a third of the total – on the whole SAMPLE. In the case of the "cleaned", radio dated sample, it increases to 41.65% – approaching the half.